The Compositional Structure of the Asteroid Belt
نویسنده
چکیده
The past decade has brought major improvements in large-scale asteroid discovery and characterization with over half a million known asteroids and over 100,000 with some measurement of physical characterization. This explosion of data has allowed us to create a new global picture of the Main Asteroid Belt. Put in context with meteorite measurements and dynamical models, a new and more complete picture of Solar System evolution has emerged. The question has changed from “What was the original compositional gradient of the Asteroid Belt?” to “What was the original compositional gradient of small bodies across the entire Solar System?” No longer is the leading theory that two belts of planetesimals are primordial, but instead those belts were formed and sculpted through evolutionary processes after Solar System formation. This article reviews the advancements on the fronts of asteroid compositional characterization, meteorite measurements, and dynamical theories in the context of the heliocentric distribution of asteroid compositions seen in the Main Belt today. This chapter also reviews the major outstanding questions relating to asteroid compositions and distributions and summarizes the progress and current state of understanding of these questions to form the big picture of the formation and evolution of asteroids in the Main Belt. Finally, we briefly review the relevance of asteroids and their compositions in their greater context within our Solar System and beyond.
منابع مشابه
The Dynamical Evolution of the Asteroid Belt
The asteroid belt helps us in reconstructing the origin and the evolution of the solar system, probably better than the planets themselves. This is because the asteroid belt provides several key constraints that can be used to effectively guide the development, calibration, and validation of evolutionary models. Compared to other small-body populations, such as the Kuiper belt or Oort cloud, th...
متن کاملNumerous Weak Resonances Drive Asteroids towardTerrestrial Planets Orbits
A systematic exploration of the chaotic structure of the asteroid belt is presented, first taking into account only the perturbations provided by the four giant planets and then including also the effects of the inner planets. We find that both the inner belt (a< 2.5 AU) and the outer part of the main belt (a> 2.8 AU) are mostly chaotic. In the outer part of the belt, chaos is due to the presen...
متن کاملThe empty primordial asteroid belt
The asteroid belt contains less than a thousandth of Earth's mass and is radially segregated, with S-types dominating the inner belt and C-types the outer belt. It is generally assumed that the belt formed with far more mass and was later strongly depleted. We show that the present-day asteroid belt is consistent with having formed empty, without any planetesimals between Mars and Jupiter's pre...
متن کاملDynamical erosion of the asteroid belt and implications for large impacts in the inner solar system
The cumulative effects of weak resonant and secular perturbations by the major planets produce chaotic behavior of asteroids on long timescales. Dynamical chaos is the dominant loss mechanism for asteroids with diameters D & 10 km in the current asteroid belt. In a numerical analysis of the long term evolution of test particles in the main asteroid belt region, we find that the dynamical loss h...
متن کاملDepletion of the Outer Asteroid Belt
During the early history of the solar system, it is likely that the outer planets changed their distance from the sun, and hence, their influence on the asteroid belt evolved with time. The gravitational influence of Jupiter and Saturn on the orbital evolution of asteroids in the outer asteroid belt was calculated. The results show that the sweeping of mean motion resonances associated with pla...
متن کامل